
9 Simple use of files

9.1  DEALING WITH MORE DATA

Realistic examples of programs with loops and selection generally have to work
with largish amounts of data.  Programs need different data inputs to test the code
for all their different selections.  It is tiresome to have to type in large amounts of
data every time a program is tested.  Also, if data always have to be keyed in, input
errors become more likely.  Rather than have the majority of the data entered each
time the program is run, the input data can be keyed into a text file once.  Then,
each time the program is subsequently run on the same data, the input can be taken
from this file.

While some aspects of file use have to be left to later, it is worth introducing
simple ways of using files.  Many of the later example programs will be organized
as shown in Figure 9.1.

Program

An ofstream 
sending output 
to a file

cout to computer 
screen

cin for keyed 
input

Figure 9.1 Programs using file i/o to supplement standard input and output.

These programs will typically send most of their output to the screen, though
some may also send results to output files on disks.  Inputs will be taken from file
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or, in some cases, from both file and keyboard.  (Input files can be created with the
editor part of the integrated development environment used for programming, or
can be created using any word processor that permits files to be saved as "text
only".)

Input files (and any output files) will be simply text files.  Their names should
be chosen so that it obvious that they contain data and are not "header" (".h") or
"code" (".cp") files.  Some environments may specify naming conventions for such
data files.  If there are no prescribed naming schemes, then adopt a scheme where
data files have names that end with ".dat" or ".txt".

Data files based on text are easy to work with; you can always read them and
change them with word processors etc.  Much later, you will work with files that
hold data in the internal binary form used in programs.  Such files are preferred in
advanced applications because, obviously, there is no translation work (conversion
from internal to text form) required in their use.  But such files can not be read by
humans.

Some programming environments, e.g. the Unix environment, permit inputs and
outputs to be "redirected" to files.  This means that:

1) you can write a program that uses cin for input, and cout for output, and test
run it normally with the input taken from keyboard and have results sent to
your screen,

then

2) you can subsequently tell the operating system to reorganize things so that
when the program needs input it will read data from a file instead of trying to
read from the keyboard (and, similarly, output can be routed to a file instead of
being sent to the screen).

Such "redirection" is possible (though a little inconvenient) with both the Borland
Symantec systems.  But, instead of using cin and cout redirected to files, all the
examples will use explicitly declared "filestream" objects defined in the program.

The program will attach these filestream objects to named files and then use
them for input and output operations.

Text files

Binary files

"Redirection of input
and output".

9.2 DEFINING FILESTREAM OBJECTS

If a program needs to make explicit connections to files then it must declare some
"filestream" objects.

The header file fstream.h contains the definitions of these objects.  There are
basically three kinds:

• ifstream objects --- these can be used to read data from a named file;

• ofstream objects --- these can be used to write data to a named file;

and

fstream.h header file
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• fstream objects --- these are used with files that get written and read (at
different times) by a program.

The examples will mainly use ifstream objects for input.  Some examples may
have ofstream objects.

The fstream objects, used when files are both written and read, will not be
encountered until much later examples (those dealing with files of record
structures).

A program that needs to use filestreams must include both the iostream.h and
fstream.h header files:

#include <iostream.h>
#include <fstream.h>

int main()
{

   ...;

ifstream objects are simply specialized kinds of input stream objects.  They
can perform all the same kinds of operations as done by the special cin input
stream, i.e. they can "give" values to integers, characters, doubles, etc.  But, in
addition, they have extra capabilities like being able to "open" and "close" files.

Similarly, ofstream objects can be asked to do all the same things as cout –
print the values integers, doubles etc – but again they can also open and close
output files.

The declarations in the file fstream.h make ifstream, ofstream, and fstream
"types".  Once the fstream.h header file has been included, the program can contain
definitions of variables of these types.

Often, filestream variables will be globals because they will be shared by many
different routines in a program; but, at least in the first few examples, they will be
defined as local  variables of the main program.

There are two ways that such variables can be defined.

#include <iostream.h>
#include <fstream.h>

int main()
{
    ifstream   input("theinput.txt", ios::in);
    ...

Here variable input is defined as an input filestream attached to the file called
theinput.txt (the token ios::in specifies how the file will be used, there will be
more examples of different tokens later).  This style is appropriate when the name
of the input file is fixed.

The alternative form of definition is:

ifstream objects

ofstream objects

Defining a filestream
attached to a file with
a known fixed name
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Defining a filestream
that will subsequently

be attached to a
selected file

#include <iostream.h>
#include <fstream.h>

int main()
{
    ifstream   in1;
    ...

This simply names in1 as something that will be an input filestream; in1 is not
attached to an open file and can not be used for reading data until an "open"
operation is performed naming the file.  This style is appropriate when the name of
the input file will vary on different runs of the program and the actual file name to
be used is to be read from the keyboard.

The open request uses a filename (and the ios::in token).  The filename will
be a character string; usually a variable but it can be a constant (though then one
might as well have used the first form of definition).  With a constant filename, the
code is something like:

#include <iostream.h>
#include <fstream.h>

void main()
{
    ifstream   in1;
    ...
    in1.open("file1.txt", ios::in);
    // can now use in1 for input ...
    ...

(Realistic use of open() with a variable character string has to be left until arrays
and strings have been covered.)

Call to open()

9.3 USING INPUT AND OUTPUT FILESTREAMS

Once an input filestream variable has been defined (and its associated file opened
either implicitly or explicitly), it can be used for input.  Its use is just like cin:

#include <iostream.h>
#include <fstream.h>

void main()
{

ifstream   input("theinput.txt", ios::in);
long l1, l2; double d3; char ch;
...
input >> d3; // read a double from file
...
input >> ch; // read a character
...
input >> l1 >> l2; // read two long integer
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Similarly, ofstream output files can be used like cout:

#include <iostream.h>
#include <fstream.h>

void main()
{

// create an output file
ofstream out1("results.txt", ios::out);
int i; double d;
...
// send header to file
out1 << "The results are :" << endl; ...
for(i=0;i<100; i++) {

...
// send data values to file
out1 << "i : " << i << ",    di " << d << endl;
...
}

out1.close(); //finished, close the file.

This code illustrates "close", another of the extra things that a filestream can do that
a simple stream cannot:

out1.close();

Programs should arrange to "close" any output files before finishing, though the
operating system will usually close any input files or output files that are still open
when a program finishes.

9.4 STREAM' STATES

All stream objects can be asked about their state: "Was the last operation
successful?", "Are there any more input data available?", etc.  Checks on the states
of streams are more important with the filestreams that with the simple cin and
cout streams (where you can usually see if anything is wrong).

It is easy to get a program to go completely wrong if it tries to take more input
data from a filestream after some transfer operations have already failed.  The
program may "crash", or may get stuck forever in a loop waiting for data that can't
arrive, or may continue but generate incorrect results.

Operations on filestreams should be checked by using the normal stream
functions good(), bad(), fail(), and eof().  These stream functions can be
applied to any stream, but just consider the example of an ifstream:

ifstream in1("indata.txt", ios::in);

The state of stream in1 can be checked:

in1.good() returns "True" (1) if in1 is OK to use
in1.bad() returns "True" (1) if last operation on
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in1 failed and there is no way to recover
from failure

in1.fail() returns "True" (1) if last operation on
in1 failed but recovery may be possible

in1.eof() returns "True" (1) if there are no more
data to be read.

If you wanted to give up if the next data elements in the file aren't two integers, you
could use code like the following:

ifstream in1("indata.txt", ios::in);
long val1, val2;
in1>> val1 >> val2;

if(in1.fail()) {
cout << "Sorry, can't read that file" << endl;
exit(1);
}

(There are actually two status bits associated with the stream – the badbit and the
failbit.  Function bad() returns true if the badbit is set, fail() returns true if
either is set.)

Naturally, this being C++ there are abbreviations.  Instead of phrasing a test
like:

if(in1.good())
…

your can write:

if(in1)
…

and similarly you may substitute

if(!in1)

for

if(in1.bad())

Most people find these particular abbreviated forms to be somewhat confusing so,
even though they are legal, it seems best not to use them.  Further, although these
behaviours are specified in the iostream header, not all implementations comply!

One check should always be made when using ifstream files for input.  Was the
file opened?

There isn't much point continuing with the program if the specified data file isn't
there.

The state of an input file should be checked immediately after it is opened
(either implicitly or explicitly).  If the file is not "good" then there is no point in
continuing.
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A possible way of coding the check for an OK input file should be as follows:

#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>

int main()
{

ifstream in1("mydata.txt", ios::in);
switch(in1.good()) {

case 1:
cout << "The file is OK, the program continues" << endl;
break;

case 0:
cout << "The file mydata.txt is missing, program"

" gives up"  << endl;
        exit(1);
     }
    ...

It is a pity that this doesn't work in all environments.
Implementations of C++ aren't totally standardized.  Most implementations

interpret any attempt to open an input file that isn't there as being an error.  In these
implementations the test in1.good() will fail if the file is non-existent and the
program stops.

Unfortunately, some implementations interpret the situation slightly differently.
If you try to open an input file that isn't there, an empty file is created.  If you check
the file status, you are told its OK.  As soon as you attempt to read data, the
operation will fail.

The following style should however work in all environments:

int main()
{

ifstream in1("mydata.txt", ios::in | ios::nocreate);
switch(in1.good()) {

…

The token combination ios::in | ios::nocreate specifies that an input file is required
and it is not to be created if it doesn't already exist.

9.5 OPTIONS WHEN OPENING FILESTREAMS

You specify the options that you want for a file by using the following tokens
either individually or combination:

ios::in Open for reading.
ios::out Open for writing.
ios::ate Position to the end-of-file.
ios::app Open the file in append mode.
ios::trunc Truncate the file on open.
ios::nocreate Do not attempt to create the file if it



214 Simple use of files

does not exist.
ios::noreplace Cause the open to fail if the file exists.
ios::translate Convert CR/LF to newline on input and

vice versa on output.

(The translate option may not be in your selection; you may have extras, e.g.
ios::binary.)  Obviously, these have to make sense, there is not much point
trying to open an ifstream while specifying ios::out!

Typical combinations are:

ios::in | ios::nocreate open if file exists,
fail otherwise

ios::out | ios::noreplace open new file for output,
fail if filename
already exists

ios::out | ios::ate (re)open an existing output
file, arranged so
that new data added
at the end after
existing data

ios::out | ios::noreplace | ios::translate
open new file, fail if name

exists, do newline
translations

ios::out | ios::nocreate | ios::trunc
open an existing file for

output, fail if file
doesn't exist, throw
away existing
contents and start
anew

"Appending" data to an output file, ios::app, might seem to mean the same as
adding data at the end of the file, ios::ate.   Actually, ios::app has a
specialized meaning – writes always occur at the end of the file irrespective of any
subsequent positioning commands that might say "write here rather than the end".
The ios::app mode is really intended for special circumstances on Unix systems
etc where several programs might be trying to add data to the same file.  If you
simply want to write some extra data at the end of a file use ios::ate.

The tokens ios::in etc are actually constants that have a single bit set in bit
map.  The groupings like ios::open | ios::ate build up a "bitmask" by bit-
oring together the separate bit patterns.  The code of fstream's open() routines
checks the individual bit settings in the resulting bit mask, using these to select
processing options.  If you want to combine several bit patterns to get a result, you
use an bit-or operation, operator |.

Don't go making the following mistakes!

ofstream out1("results.dat", ios::out || ios::noreplace);
ifstream in1("mydata.dat", ios::in & ios::nocreate);

The first example is wrong because the boolean or operator, ||, has been used
instead of the required bit-or operator |.  What the code says is "If either the

"Bitmasks"
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constant ios::out or ios::noreplace is non zero, encode a one bit here".  Now
both these constants are non zero, so the first statement really says
outl("results.dat",1).  It may be legal C++, but it sure confuses the run-time
system.  Fortuitously, code 1 means the same as ios::in.  So, at run-time, the
system discovers that you are opening an output file for reading.  This will
probably result in your program being terminated.

The second error is a conceptual one.  The programmer was thinking "I want to
specify that it is an input file and it is not to be created".  This lead to the code
ios::in & ios::nocreate.  But as explained above, the token combinations are
being used to build up a bitmask that will be checked by the open() function.  The
bit-and operator does the wrong combination.  It is going to leave bits set in the
bitmask that were present in both inputs.  Since ios::in and ios::nocreate
each have only one bit, a different bit, set the result of the & operation is 0.  The
code is actually saying in1("mydata.dat", 0).  Now option 0 is undefined for
open() so this isn't going to be too useful.

9.6 WHEN TO STOP READING DATA?

Programs typically have loops that read data.  How should such loops terminate?
The sentinel data approach was described in section 8.5.1.  A particular data

value (something that cannot occur in a valid data element) is identified (e.g. a 0
height for a child).  The input loop stops when this sentinel value is read.  This
approach is probably the best for most simple programs.  However, there can be
problems when there are no distinguished data values that can't be legal input (the
input requirement might be simply "give me a number, any number").

The next alternative is to have, as the first data value, a count specifying how
many data elements are to be processed.  Input is then handled using a for loop as
follows:

int num;
ifstream in1("indata.txt", ios::in);
…
// read number of entries to process
in1 >> num;
for(int i = 0; i < num; i++) {

// read height and gender of child
char gender_tag;
double height;
cin >> height >> gender_tag;
…
}

The main disadvantage of this approach is that it means that someone has to count
the number of data elements!

The third method uses the eof() function for the stream to check for "end of
file".  This is a sort of semi-hardware version of a sentinel data value.  There is
conceptually a mark at the end of a file saying "this is the end".  Rather than check
for a particular data value, your code checks for this end of file mark.

Sentinel data

Count

eof()
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This mechanism works well for "record structured files", see Figure 9.2A.  Such
files are explained more completely in section 17.3.  The basic idea is obvious.
You have a file of records, e.g. "Customer records"; each record has some number
of characters allocated to hold a name, a double for the amount of money owed,
and related information.  These various data elements are grouped together in a
fixed size structure, which would typically be a few hundred bytes in size (make it
400 for this example).  These blocks of bytes would be read and written in single
transfers.  A record would consist of several successive records.

151.5  f
169 m
148 m

Input text

151.5•••f•∞169•m∞148••m•∞•∞∞???????

•   space
∞   return
?   any character

Actual input file

end of file

Text file:

"Record structured" file:

Customer-1 Customer-2 Customer-3

end of file

A

B

Figure 9.2 Ends of files.

Three "customer records" would take up 1200 bytes; bytes 0…399 for
Customer-1, 400…799 for Customer-2 and 800…1199 for Customer-3.  Now, as
explained in Chapter 1, file space is allocated in blocks.  If the blocksize was 512
bytes, the file would be 1536 bytes long.  Directory information on the file would
specify that the "end of file mark" was at byte 1200.

You could write code like the following to deal with all the customer records in
the file:

ifstream sales("Customers.dat", ios::in | ios::nocreate);
if(!sales.good()) {

cout << "File not there!" << endl;
exit(1);
}

while(! sales.eof()) {
read and process next record
}
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As each record is read, a "current position pointer" gets advanced through the file.
When the last record has been read, the position pointer is at the end of the file.
The test sales.eof() would return true the next time it is checked.  So the while
loop can be terminated correctly.

The eof() scheme is a pain with text files.  The problem is that text files will
contain trailing whitespace characters, like "returns" on the end of lines or tab
characters or spaces; see Figure 9.2B.  There may be no more data in the file, but
because there are trailing whitespace characters the program will not have reached
the end of file.

If you tried code like the following:

ifstream kids("theHeights.dat", ios::in | ios::nocreate);
if(!kids.good()) {

cout << "File not there!" << endl;
exit(1);
}

while(! kids.eof()) {
double height;
char gender_tag;
kids >> height >> gender_tag;
…
}

You would run into problems.  When you had read the last data entry (148  m) the
input position pointer would be just after the final 'm'.  There remain other
characters still to be read – a space, a return, another space, and two more returns.
The position marker is not "at the end of the file".  So the test kids.eof() will
return false and an attempt will be made to execute the loop one more time.

But, the input statement kids >> height >> gender_tag; will now fail –
there are no more data in the file.  (The read attempt will have consumed all
remaining characters so when the failure is reported, the "end of file" condition will
have been set.)

You can hack around such problems, doing things like reading ahead to remove
"white space characters" or "breaking" out of a loop if an input operation fails and
sets the end of file condition.

But, really, there is no point fighting things like this.  Use the eof() check on
record files, use counts or sentinel data with text files.

9.7 MORE FORMATTING OPTIONS

The example in section 8.5.1 introduced the setprecision() format manipulator
from the iomanip library.  This library contains some additional "manipulators" for
changing output formats.  There are also some functions in the standard iostream
library than can be used to change the ways output and input are handled.

You won't make much use of these facilities, but there are odd situations where
you will need them.

The following iomanip manipulators turn up occasionally:
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setw(int) sets a width for the next output
setfill(int) changes the fill character for next output

along with some manipulators defined in the standard iostream library such as

hex output number in hexadecimal format
dec output number in decimal format

The manipulators setprecision(), hex, and dec are "sticky".  Once you set them they
remain in force until they are reset by another call.  The width manipulators only
affect the next operation.  Fill affects subsequent outputs where fill characters are
needed (the default is to print things using the minimum number of characters so
that the filler character is normally not used).

The following example uses several of these manipulators:

int main()
{

int number = 901;

cout << setw(10) << setfill('#') << number << endl;
cout << setw(6) << number << endl;

cout << dec << number << endl;
cout << hex << number << endl;
cout << setw(12) << number << endl;
cout << setw(16) << setfill('@') << number << endl;

cout << "Text" << endl;
cout << 123 << endl;

cout << setw(8) << setfill('*') << "Text" << endl;

double d1 = 3.141592;
double d2 = 45.9876;
double d3 = 123.9577;

cout << "d1 is " <<  d1 << endl;

cout << "setting precision 3 " << setprecision(3)
<< d1 << endl;

cout << d2 << endl;
cout << d3 << endl;
cout << 4214.8968 << endl;

return EXIT_SUCCESS;
}

The output produced is:

#######901 901, 10 spaces, # as fill
###901 901, 6 spaces, continue # fill
901 just print decimal 901
385 print it as a hexadecimal number
#########385 hex, 12 spaces, # still is filler



More formatting options 219

@@@@@@@@@@@@@385 change filler
Text print in minimum width, no filler
7b still hex output!
****Text print text, with width and fill
d1 is 3.141592 fiddle with precision on doubles
setting precision 3 3.142
45.988
123.958
4.215e+03

There are alternative mechanisms that can be used to set some of the format
options shown above.  Thus, you may use

cout.width(8) instead of cout << setw(8)
cout.precision(4) .. cout << setprecision(4)
cout.fill('$') .. cout << setfill('$')

There are a number of other output options that can be selected.  These are
defined by more of those tokens (again, these are actually defined bit patterns);
they include:

ios::showpoint (printing of decimal point and trailing 0s)
ios::showpos (require + sign with positive numbers)
ios::uppercase (make hex print ABCDE instead of abcde)

These options are selected by telling the output stream object to "set flags" (using
its setf() function) and are deselected using unsetf().  The following code
fragment illustrates their use:

int main()
{

long number = 8713901;

cout.setf(ios::showpos);
cout << number << endl;
cout.unsetf(ios::showpos);
cout << number << endl;
cout << hex << number << endl;
cout.setf(ios::uppercase);
cout << number << endl;
return EXIT_SUCCESS;

}

The code should produce the output:

+8713901 positive sign forced to be present
8713901 normally it isn't shown
84f6ad usual hex format
84F6AD format with uppercase specified

Two related format controls are:

ios::left

Alternative form of
specification

Other strange format
options
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ios::right

these control the "justification" of data that is printed in a field of specified width:

int main()
{

cout.width(24);
cout.fill('!');
cout << "Hello" << endl;
cout.setf(ios::left, ios::adjustfield);
cout.width(24);
cout << "Hello" << endl;
cout.setf(ios::right, ios::adjustfield);
cout.width(24);
cout << "Hello" << endl;

return EXIT_SUCCESS;
}

should give the output:

!!!!!!!!!!!!!!!!!!!Hello
Hello!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!Hello

Note the need to repeat the setting of the field width; unlike fill which lasts, a width
setting affects only the next item.  As shown by the output, the default justification
is right justified.  The left/right justification setting uses a slightly different version
of the setf() function.  This version requires two separate data items – the
left/right setting and an extra "adjustfield" parameter.

You can specify whether you want doubles printed in "scientific" or "fixed
form" styles by setting:

ios::scientific
ios::fixed

as illustrated in this code fragment:

int main()
{

double number1 = 0.00567;
double number2 = 1.746e-5;
double number3 = 9.43214e11;
double number4 = 5.71e93;
double number5 = 3.08e-47;

cout << "Default output" << endl;

cout << number1 << ", " << number2 << ", "
<< number3 << endl;

cout << "      " << number4 << ", " << number5 << endl;

cout << "Fixed style" << endl;
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cout.setf(ios::fixed, ios::floatfield);

cout << number1 << ", " << number2 << ", "
<< number3 << endl;

// cout << "      " << number4 ;
cout << number5 << endl;

cout << "Scientific style" << endl;
cout.setf(ios::scientific, ios::floatfield);

cout << number1 << ", " << number2 << ", "
<< number3 << endl;

cout << "      " << number4 << ", " << number5 << endl;

return EXIT_SUCCESS;
}

This code should produce the output:

Default output
0.00567, 1.746e-05, 9.43214e+11
      5.71e+93, 3.08e-47
Fixed style
0.00567, 0.000017, 943214000000
0
Scientific style
5.67e-03, 1.746e-05, 9.43214e+11
      5.71e+93, 3.08e-47

The required style is specified by the function calls setf(ios::fixed,
ios::floatfield) and setf(ios::scientific, ios::floatfield).  (The
line with the code printing the number 5.71e93 in "fixed" format style is
commented out – some systems can't stand the strain and crash when asked to print
such a large number using a fixed format.  Very small numbers, like 3.08e-47, are
dealt with by just printing zero.)

The various formatting options available with streams should suffice to let you
layout any results as you would wish.  Many programmers prefer to use the
alternative stdio library when they have to generate tabular listings of numbers etc.
You IDE environment should include documentation on the stdio library; its use is
illustrated in all books on C.

You don't often want to change formatting options on input streams.  One thing
you might occasionally want to do is set an input stream so that you can actually
read white space characters (you might need this if you were writing some text
processing program and needed to read the spaces and return characters that exist
in an input file).  You can change the input mode by unsetting the ios::skipws
option, i.e.

cin.unsetf(ios::skipws);

Maybe you should
use stdio instead!

Changing options for
input streams
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By default, the skipws ("skip white space") option is switched on.  (You may get
into tangles if you unset skipws and then try to read a mixture of character and
numeric data.)

The following program illustrates use of this control to change input options:

int main()
{
/*
Program to count the number of characters preceding a
period '.' character.
*/

int count = 0;
char ch;

// cin.unsetf(ios::skipws);
cin >> ch;
while(ch != '.') {

count++;
cin >> ch;

}
cout << endl;
cout << "I think I read " << count << " characters."

<< endl;
return EXIT_SUCCESS;

}

Given the input:

Finished, any questions? OK, go; wake that guy in the back row,
he must have been left here by the previous lecturer.

the output would normally be:

I think I read 95 characters.

but if the cin.unsetf(ios::skipws); statement is included, the output would
be:

I think I read 116 characters.

because the spaces and carriage returns will then have been counted as well as the
normal letters, digits, and punctuation characters.

9.8 EXAMPLE

Problem

Botanists studying soya bean production amassed a large amount of data relating to
different soya plantations.  These data had been entered into a file so that they
could be analyzed by a program.
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Some soya plantations fail to produce a harvestable crop.  The botanists had no
idea of the cause of the problem – they thought it could be disease, or pest
infestation, or poor nutrition, or maybe climatic factors.  The botanists started by
recording information on representative plants from plots in each of the plantations.

Each line of the file contained details of one plant.  These details were encoded
as 0 or 1 integer values.  The first entry on each line indicated whether the plant
was rated healthy (1) or unhealthy (0) at harvest time.  Each of the other entries
represented an attribute considered in the study.  These attributes included "late
spring frosts", "dry spring", "beetles", "nitrogen deficient soil", "phosphate
deficient soil", etc; there were about twenty attributes in the study (for simplicity
we will reduce it to five).

The file contains hundreds of lines with entries.  Examples of individual entries
from the file were:

0 1 0 0 0 0

(an unhealthy plant that had experienced a late spring frosts but no other problems),
and

1 1 0 1 0 0

(a plant that was healthy despite both a late spring frost and beetles in summer).
The botanists wanted these data analyzed so as to identify any correlations

between a plant's health and any chosen one of the possible attributes.
Consider a small test with results for 100 plants.  The results might show that 45

were unhealthy, and that beetles had been present for 60 of them.  If we assume
that the presence of beetles is unrelated to plant health, then there should be a
simple random chance distribution of beetles on both healthy and the unhealthy
plants.  So here, 60% of the 45 diseased plants (i.e. 27 plants) should have had
beetle infestations as should 33 of the healthy plants.

Expected distribution
beetles clean

unhealthy 27 18 = 45
healthy 33 22 = 55

60 40

While it is unlikely that you would see exactly this distribution, if health and beetle
presence are unrelated then the observed results should be something close to these
values.

The actual observed distribution might be somewhat different.  For example one
might find that 34 of the unhealthy plants had had lots of beetles:

Observed distribution
beetles clean

unhealthy 34 11 = 45
healthy 26 29 = 55

60 40
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Results such as these would suggest that beetles, although certainly not the sole
cause of ill health, do seem to make plants less healthy.

Of course, 100 samples is really quite small; the differences between expected
and observed results could have arisen by chance. Larger differences between
observed and expected distributions occur with smaller chance.  If the differences
are very large, they are unlikely to have occurred by chance.  It does depend on the
number of examples studied; a smallish difference may be significant if it is found
consistently in very large numbers of samples.

Statisticians have devised all sorts of formulae for working out "statistics" that
can be used to estimate the strength of relationships among values of different
variables.  The botanists' problem is one that can be analyzed using the χ2 statistic
(pronounced ≈ "kiye-squared")  This statistic gives a single number that is a
measure of the overall difference between observed and expected results and which
also takes into account the size of the sample.

The χ2 statistic is easily computed from the entries in the tables of observed and
expected distributions:

χ2 = iO − iE( )2

i=1

4∑ / iE

Oi value in observed distribution
Ei value in expected distribution
∑ sum is over the four entries in the table

For the example above,

χ2  =  (34-27)2 /27  +  (11-18)2 /18   +  (26-33)2 /33
+  (29-22)2 /22

≈ 8

If the observed values were almost the same as the expected values (Oi ≈ Ei) then
the value of χ2 would be small or zero.  Here the "large" value of χ2 indicates that
there is a significant difference between expected and observed distributions of
attribute values and class designations.  It is very unlikely that such a difference
could have occurred solely by chance, i.e. there really is some relation between
beetles and plant health.

You can select a chance level at which to abandon the assumption that an
attribute (e.g. beetle presence) and a class (e.g. unhealthy) are unrelated.  For
example, you could say that if the observed results have a less than 1 in 20 chance
of occurring then the assumption of independence should be abandoned.  You
could be more stringent and demand a 1 in 100 chance.  Tables exist that give a
limit value for the χ2 statistic associated with different chance levels.  In a case like
this, if the χ2 statistic exceeds ≈3.8 then an assumption of independence can be
abandoned provided that you accept that a 1 in 20 chance as too unlikely.  Someone
demanding a 1 in 100 chance would use a threshold of ≈5.5.

The botanists would be able to get an idea of what to focus on by performing a
χ2 analysis to measure the relation between plant health and each of the attributes
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for which they had recorded data.  For most attributes, the observed distributions
would turn out to be pretty similar to the expected distributions and the χ2 values
would be small (0…1).  If any of the attributes had a large χ2 value, then the
botanists would know that they had identified something that affected plant health.

Specification:

1. The program is to process the data in the file "plants.dat".

This file contains several hundred lines of data.  Each line contains details of
one plant.  The data for a plant take the form of six integer values, all 0 or 1;.
The first is the plant classification – unhealthy/healthy.  The remaining five are
the values recorded for attributes of that plant.

This data value is terminated by a sentinel.  This consist of a line with a single
number, -1, instead of a class and set of five attributes.

2. The program is to start by prompting for and reading input from cin.  This
input is to be an integer in the range 1 to 5 which identifies the attribute that is
to be analyzed in this run of the program.

3. The program is to then read all the data records in the file, accumulating the
counts that provide the values for the observed distribution and overall counts
of the number of healthy plants etc.

4. When all the data have been read, the program is to calculate the values for the
expected distribution.

5. The program is to print details of both expected and observed distributions;
these should be printed in tabular form with data entries correctly aligned.

6. Finally, the program is to calculate and print the value of the χ2 statistic.

Program design

A first iteration through the design process gives a structure something like the
following:

open the data file for input
prompt for and get number identify attribute of interest

read the first class value (or a sentinel if someone
is trying to trick you with an empty file!)

initialize all counters

while class != sentinel
read all five attribute values
select value for the attribute of interest

Preliminary design
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increment appropriate counters
read next class value or sentinel

calculate four values for expected distribution

print tables of observed and expected distributions

calculate  χ2

print  χ2

There are several points in the initial design outline that require elaboration.
What counters are needed and how can the "observed" and "expected" tables be

represented?  How can the "attribute of interest" be selected?  How should an
"appropriate counter" be identified and updated?  All of these issues must be sorted
out before the complete code is written.  However, it will often be the case that the
easiest way to record a design decision will be to sketch out a fragment of code.

Each of the tables really needs four variables:

Observed Expected
attribute attribute
0 1 0 1

unhealthy 0 Obs00 Obs01 Exp00 Exp01
healthy 1 Obs10 Obs11 Exp10 Exp11

Three additional counters are needed to accumulate the data needed to calculate the
"expected" values Exp00 … Exp11; we need a count of the total number of plants, a
count of healthy plants, and a count for the number of times that the attribute of
interest was true.

Selecting the attribute of interest is going to be fairly easy.  The value (1…5)
input by the user will have been saved in some integer variable interest.  In the
while loop, we can have five variables a1 … a5; these will get values from the file
using an input statement like:

infile >> a1 >> a2 >> a3 >> a4 >> a5;

We can have yet another variable, a, which will get the value of the attribute of
interest.  We could set a using a switch statement:

switch(interest) {
case 1: a = a1; break;
…
case 5: a = a5; break;

}

(Use of arrays would provide an alternative mechanism for holding the values and
selecting the one of interest.)

The values for variables a and pclass (plant's 0/1 class value) have to be used
to update the counters.  There are several different ways that these update
operations could be coded.

Second iteration
through design

process
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Select an approach that makes the meaning obvious even if this results in
somewhat wordier and less efficient code than one of the alternatives.  The
updating of the counters is going to be a tiny part of the overall processing cost
(most time will be devoted to conversion of text input into internal numeric data).
There is no point trying to "optimize" this code and make it "efficient" because this
is not the code where the program will spend its time.

The counts could be updated using "clever" code like:

// Update count of cases with attribute true
atotalpos += a;
healthy += pclass; // and count of healthy plants

Obs11 += pclass && a;
Obs10 += pclass && !a;

It should take you less than a minute to convince yourself that those lines of code
are appropriate.  But fifteen seconds thought per line of code?  That code is too
subtle.  Try something cruder and simpler:

#define TRUE 1
…
atotalpos += (a == TRUE) ? 1 : 0;
healthy += (pclass == TRUE) ? 1 : 0;

Obs11 += ((pclass == TRUE) && (a == TRUE)) ? 1 : 0;

or even

if(a == TRUE) atotalpos++;
…

Before implementation, you should also compose some test data for yourself.
You will need to test parts of your program on a small file whose contents you
know; there is no point touching the botanists' file with its hundreds of records until
you know that your program is doing the right thing with data.  You would have to
create a file with ten to twenty records, say 12 healthy and 6 unhealthy plants.  You
can pick the attribute values randomly except for one attribute that you make true
(1) mainly for the unhealthy plants.

Implementation

This program is just at the level of complexity where it becomes worth building in
stages, testing each stage in turn.

The first stage in implementation would be to create something like a program
that tries to open an input file, stopping sensibly if the file is not present, otherwise
continuing by simply counting the number of records.

#include <stdlib.h>
#include <iostream.h>

Data

First stage partial
implementation



228 Simple use of files

#include <fstream.h>

int main()
{

// Change file name to plants.dat when ready to fly
ifstream infile("test.dat", ios::in | ios::nocreate);
int count = 0;

if(!infile.good()) {
cout << "Sorry. Couldn't open the file." <<endl;
exit(1);

}

int pclass;

infile >> pclass;

while(pclass != -1) {
count++;
int a1, a2, a3, a4, a5;
infile >> a1 >> a2 >> a3 >> a4 >> a5;
// Discard those data values
// Read 0/1 classification of next plant
// or sentinel value -1
infile >> pclass;

}

cout << "I think there were " << count
<< " records in that file." << endl;

return EXIT_SUCCESS;

}

With a basic framework running, you can start adding (and testing) the data
processing code.  First we could add the code to determine the attribute of interest
and to accumulate some of the basic counts.

#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>

#define TRUE 1
#define FALSE 0

int main()
{

// Change file name to plants.dat when ready to fly
ifstream infile("test.dat", ios::in | ios::nocreate);
int count = 0;

if(!infile.good()) {
cout << "Sorry. Couldn't open the file." <<endl;
exit(1);

}

int pclass;

Second stage partial
implementation
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int atotalpos = 0;
int healthy = 0;
int interest;

cout << "Please specify attribute of interest"
"(1...5) : ";

cin >> interest;

if((interest < 1) ||(interest >5)) {
cout << "Sorry, don't understand, wanted"

" value 1..5" << endl;
exit(1);

}

infile >> pclass;

while(pclass != -1) {
count++;
if(pclass == TRUE)

healthy++;

int a1, a2, a3, a4, a5;
infile >> a1 >> a2 >> a3 >> a4 >> a5;
int a;
switch(interest) {

case 1: a = a1; break;
case 2: a = a2; break;
case 3: a = a3; break;
case 4: a = a4; break;
case 5: a = a5; break;

}
if(a == TRUE)

atotalpos++;
infile >> pclass;

}

cout << "Data read for " << count << " plants." << endl;
cout << healthy << " were healthy." << endl;
cout << "Attribute of interest was " << interest << endl;
cout << "This was true in " << atotalpos << " cases."

<< endl;
return EXIT_SUCCESS;

}

Note the "sanity check" on the input.  This is always a sensible precaution.  If
the user specifies interest in an attribute other than the five defined in the file there
is really very little point in continuing.

The next sanity check is one that you should perform.  You would have to run
this program using the data in your small test file.  Then you would have to check
that the output values were appropriate for your test data.

The next stage in the implementation would be to i) define initialized variables
that represent the entries for the "observed" and "expected" tables, ii) add code
inside the while loop to update appropriate "observed" variables, and iii) provide
code that prints the "observed" table in a suitable layout.  The variables for the

Third stage partial
implementation
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"observed" variables could be integers, but it is simpler to use doubles for both
observed and expected values.  Getting the output in a good tabular form will
necessitate output formatting options to set field widths etc.  You will almost
certainly find it necessary to make two or three attempts before you get the layout
that you want.

These extensions require variable definitions just before the while loop:

double Obs00, Obs01, Obs10, Obs11;
double Exp00, Exp01, Exp10, Exp11;
Obs00 = Obs01 = Obs10 = Obs11 = Exp00 = Exp01 =

Exp10 = Exp11 = 0.0;

Code in the while loop:

if((pclass == FALSE) && (a == FALSE)) Obs00++;
if((pclass == FALSE) && (a == TRUE)) Obs01++;
if((pclass == TRUE) && (a == FALSE)) Obs10++;
if((pclass == TRUE) && (a == TRUE)) Obs11++;

Output code like the following just after the while loop:

cout.setf(ios::fixed, ios::floatfield);

cout << "Observed distribution" << endl;
cout << "               Attribute " << interest << endl;
cout << "                0       1" << endl;
cout << "Unhealthy" << setw(8) << setprecision(1) << Obs00;
cout << setw(8) << Obs01;
cout << endl;
cout << "Healthy  " << setw(8) << Obs10 <<setw(8) << Obs11;
cout << endl;

Note that the use of setprecision() and setw() requires the iomanip library,
i.e. #include <iomanip.h>.  You might also chose to use set option
ios::showpoint to get a value like 7 printed as 7.0.

Finally, you would add the code to compute the expected distributions, print
these and calculate the χ2 statistic.  There is a good chance of getting a bug in the
code to calculate the expected values:

Exp10 = healthy*(count-atotalpos)/count;
Exp11 = healthy*atotalpos/count;

The formulae are correct in principle.  Value Exp11 is the expected value for the
number of healthy plants with the attribute value also being positive.  So if, as in
the example, there are 55 healthy plants, and of the 100 total plants 60 have beetles,
we should get 55 * 60/100 or 33 as value for Exp11.  If you actually had those
numeric values, there would be no problems and Exp11 would get the value 33.0.
However, if 65 of the 100 plants had had beetles, the calculation would be
55*65/100 with the correct result 35.75.  But this wouldn't be the value assigned to
Exp11; instead it would get the value 35.

Final stage of
implementation

buggy version
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All of the variables healthy, atotalpos, and count are integers.  So, by
default the calculation is done using integer arithmetic and the fractional parts of
the result are discarded.

You have to tell the compiler to code the calculation using doubles.  The
following code is OK:

Exp10 = double(healthy*(count-atotalpos))/count;
Exp11 = double(healthy*atotalpos)/count;

The code to print the expected distribution can be obtained by "cutting and
pasting" the working code that printed the observed distribution and then changing
variable names.

The final few statements needed to calculate the statistic are straightforward:

double chisq;
chisq = (Obs00 - Exp00)*(Obs00-Exp00)/Exp00;
chisq += (Obs01 - Exp01)*(Obs01-Exp01)/Exp01;
chisq += (Obs10 - Exp10)*(Obs10-Exp10)/Exp10;
chisq += (Obs11 - Exp11)*(Obs11-Exp11)/Exp11;

cout << "Chisquared value " << chisq << endl;

All the variables here are doubles so that there aren't the same problems as for
calculating Exp11 etc.  You could make these calculations slightly more efficient
by introducing an extra variable to avoid repeated calculation of similar
expressions:

double chisq;
double temp;
temp = (Obs00 - Exp00);
chisq = temp*temp/Exp00;
temp = (Obs01 - Exp01);
chisq += temp*temp/Exp01;

But honestly, it isn't worth your time bothering about such things.  The chances are
pretty good that your compiler implements a scheme for spotting "common
subexpressions" and it would be able to invent such temporary variables for itself.

You would have to run your program on your small example data set and you
would need to check the results by hand.  For a data set like the following:

1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 1 0 1
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 0 1 0 1
1 0 0 0 0 1

bug fixed
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0 1 0 1 0 1
0 0 1 0 0 0
0 1 0 1 1 0
0 1 0 1 0 1
0 1 1 0 1 1
0 0 0 1 1 0
0 1 1 0 1 0
-1

test runs of the program should produce the following outputs:

Observed distribution
               Attribute 1
                0       1
Unhealthy       2       5
Healthy        10       2
Expected distribution
               Attribute 1
                0       1
Unhealthy     4.4     2.6
Healthy       7.6     4.4
Chisquared value 5.7

and

Observed distribution
               Attribute 4
                0       1
Unhealthy       3       4
Healthy         7       5
Expected distribution
               Attribute 4
                0       1
Unhealthy     3.7     3.3
Healthy       6.3     5.7
Chisquared value 0.4

Once you had confirmed that your results were correct, you could start processing
the real file with the hundreds of data records collected by the botanists.

With larger programs, the only way that you can hope to succeed is to complete
a fairly detailed design and then implement stage by stage as illustrated in this
example.

EXERCISES

1. Modify the bank account program, exercise 3 in Chapter 8, so that it reads transaction
details from a file "trans.dat".

2. The file "temperatures.dat" contains details of the oral temperatures of several hundred
pre-med, public health, and nursing students.  Each line of the file has a number
(temperature in degrees Centigrade) and a character ('m' or 'f') encoding the gender of
the student.  The file ends with a sentinel record (0.0 x).  Example:
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37.3 m
36.9 f
37.0 m
…
37.1 f
0.0 x

Write a program to process these data.  The program is to calculate and print:

mean (average) temperature, and standard deviation, for all students,
mean and standard deviation for male students,
mean and standard deviation for female students.

minimum and maximum temperatures for all students;
minimum and maximum temperatures for male students;
minimum and maximum temperatures for female students.

A preliminary study on a smaller sample gave slightly different mean temperatures for
males and females.  A statistical test is to be made on this larger set of data to determine
whether this difference is significant.

This kind of test involves calculation of the "Z" statistic:

Let
µM = average temperature of males
µF = average temperature of females

SM = standard deviation of temperature of males
SF = standard deviation of temperature of females

NM = number of males
NF = number of females

SEM = square of standard error of temperature of males = SM*SM ÷ NM
SEF = square of standard error of temperature of females = SF*SF ÷ NF

Z  =  (µM  -  µF) ÷  √(SEM + SEF)

The statistic Z   should be a value with a mean of 0 and a standard deviation of 1.

If there is no significant difference in the two means, then values for Z should be small;
there is less than one chance in twenty that you would find a Z with an absolute value
exceeding 2.

If a Z  value greater than 2 (or less than -2) is obtained, then the statistic suggests that
one should NOT presume that the male and female temperatures have the same mean.

Your program should calculate and print the value of this statistic and state whether any
difference in means is significant.
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